CADMIUM

LITERATURE SURVEY COVERING THE YEARS 1972 AND 1973

Jan G. Noltes

Organisch Chemisch Instituut TNO, Utrecht (The Netherlands)

I. PREPARATION AND REACTIONS OF ORGANOCADMIUM COM-POUNDS

Cadmium metal reacts with pentafluoroiodobenzene in a variety of coordinating solvents such as TMF, DMF and DMSO to give almost quantitative yields of pentafluorophenylcadmium iodide [1]:

The reversible formation of a complex of diethylcadmium with two molecules of oxygen has been established by a kinetic method. This complex may subsequently be transformed into bis(ethylperoxo)cadmium [2]:

$$Et_2Cd + 2O_2 \rightleftharpoons Et_2Cd \cdot 2O_2$$

$$Et_2Cd \cdot 2O_2$$
 \longrightarrow $(EtOO)_2Cd$

The 2/1 reaction of triphenylgermane and triphenyltin nyaride with coordinatively saturated organocadmium compounds affords the corresponding bis(triphenylgermyl)- and bis(triphenyltin)cadmium complexes [3]:

$$2Ph_3GeH + Me_2Cd \cdot L \longrightarrow (Ph_3Ge)_2Cd \cdot L + 2MeH$$

$$L = TMED, Bipy$$

$$2 Ph_3 SnH + Me_2 Cd. L \longrightarrow (Ph_3 Sn)_2 Cd. L + 2 MeH$$

 $L = THF, DME, TMED, Bipy$

Unsolvated bis(triethylgermyl)cadmium reacts with organic halides such as trityl chloride, benzyl bromide and allyl iodide in a 1/1 ratio with selective cleavage of one Ge-Cd bond. Evidence has been presented that the first step of this reaction involves one electron-transfer from the organometal compound to the organic halide and indeed in the reaction with trityl chloride trityl radicals may be detected by ESR spectroscopy [4].

$$\begin{array}{c} \text{Et}_3\text{GeCdGeEt}_3 + \text{Ph}_3\text{CCl} \longrightarrow \begin{bmatrix} \text{Et}_3\text{GeCd}^{\dagger} \cdot \text{CeEt}_3 \\ & \text{Cl}^{-} \cdot \text{CPh}_3 \end{bmatrix} \longrightarrow \\ \\ \text{Et}_3\text{GeCdCl} + \text{Ph}_3\text{C} \cdot + \text{Et}_3\text{Ge} \cdot \\ \\ \text{Et}_3\text{GeCl} + \text{Cd} & \text{Ph}_3\text{CCPh}_3 + \text{Et}_3\text{GeCPh}_3 + \text{Et}_3\text{GeGeEt}_3 \end{array}$$

A four-centre mechanism is proposed for the exothermal I/I reaction of bis(triethylgermyl)cadmium with 1, 2-dibromoethane which runs selectively according to [4]:

Dimethylcadmium, diethylcadmium and methylcadmium ethoxide react with chlorine azide with formation of the corresponding azide derivatives which according to their properties and IR spectra are coordination polymers [5].

$$R_2Cd + ClN_3 \longrightarrow RCdN_3 + RCl$$
 $(R = Me, Et)$

MeCdOEt + ClN₃ \longrightarrow EtOCdN₃ + MeCl

The I/I reaction of a di-Grignard reagent with cadmium halides

affords reagents containing two Cd-C bonds as evidenced by the products formed in reactions with carbonyl compounds and acid halides. The monomeric cadmium heterocycle (I) has been isolated by distillation and has been characterized [6]:

$$CdBr_2 + BrMg(CH_2)_5MgBr \longrightarrow Cd + 2MgBr_2$$
(I)

The reaction with acyl halides affords diketones as the main product, but in reactions with aldehydes and ketones the yield of monocarbinol generally surpasses that of the dicarbinol [6]:

The 1/2 reaction of di-Grignard reagents with cadmium halides affords an organodicadmium compound of the type XCd-(CH₂)_n-CdX the reactivity of which differs from that of [-Cd(CH₂)_n-] formed in the 1/1 reaction in that the relative yield of di-functional products formed in the reaction with acyl halides and carbonyl compounds is generally higher [7].

Dibutylcadmium reacts rapidly with cyclohexanone and acetophenone in HMPT solution at room temperature with the formation of
enoxycadmium derivatives [8], e.g.:

Soussan et al. have made an extensive study of the reaction of organocadmium compounds with α , β -unsaturated carbonyl compounds. In general, 1,4-addition takes place with α , β -unsaturated ketones, the 1,4-enolate (II) formed being capable of undergoing a secondary 1,4-addition

with the carbonyl compound to afford after hydrolysis δ-diketones (III) [9, 10]:

However, mesityl oxide and fluorenon undergo 1, 2-addition. These reactions require the presence of magnesium halider, but tetraphenyl-cyclopentadienone reacts quantitatively in the absence of magnesium halides [10]. Like organomagnesium compounds organocadmium compounds as a rule react in a 1, 2-fashion with α , β -unsaturated aldehydes, but in some cases 1, 4-addition has been observed as well [11], e.g.:

The presence of magnesium halides is required. The addition of copper(I) chloride in some cases leads to enhanced 1, 4-addition [11]. In the reaction of acroleine with diphenylcadmium a secondary 1, 2-addition of the primary 1, 4-adduct takes place leading to the formation of an adduct (IV) containing an aldehyde function which undergoes condensation with the organocadmium compound, the final product isolated being an unsaturated 1, 3-diol (VII) [9]:

$$CH_2 = CHCH + (C_6H_5)_2Cd + 2MgBr_2 \longrightarrow C_6H_5CH_2CH = CHO^{\Theta}CdPh$$
(IV)

(IV) +
$$CH_2$$
= $CHCH \longrightarrow C_6H_5CH_2CHCH$
 CH_2 = $CHCHO$ CdPh
(V)

$$(V) + (C_6H_5)_2Cd + 2MgBr_2 \longrightarrow C_6H_5CH_2CHCHO^2CdPh$$

$$CH_2 = CHCHO^2CdPh$$

$$(VI)$$

(VI)
$$\xrightarrow{\text{C}_6\text{H}_5\text{CH}_2\text{CHCHC}_6\text{H}_5}$$

$$(H_3\text{O}^+) \qquad \text{CH}_2 \neq \text{CHCHOH}$$

$$(VII)$$

The reactivity of diethylcadmium towards Schiff bases is strongly enhanced in the presence of magnesium bromide, the yield of amine isolated from the reaction with benzalaniline increasing from 3 to 92 %, if the amount of MgBr₂ present during the reaction is increased from 10 to 200 mole % [12]:

Et₂Cd + PhCH=NPh
$$\frac{1^{\circ} \text{Et}_2\text{O}; \text{MgBr}_2}{2^{\circ} \text{H}_3\text{O}^+}$$
 Et CHNHPh

The reaction of dialkylcadmium compounds with aromatic nitro compounds leads to the formation of substituted amines, but this reaction is often followed by substitution of the aromatic nucleus [13], e.g.:

References p. 52

The mechanism of the displacement of halogen from a saturated carbon atom by phenylcadmium chloride has been studied by Jones and Costanzo. The intermediacy of a free-radical intermediate is consistent with the observation of a strong ESR signal upon mixing of the reactants and with the fact that the displacement proceeds with racemization, which was established by the formation of (+)-methyl hydratropate from (R)-(+)-bromopropionate under conditions when the starting ester was optically stable [14]:

(R)-(+)-
$$CH_3CHB_rCOOCH_3$$
 + PhCdCl $\frac{60\%}{Et_2O}$
(+)- $CH_3CH(Ph)COOCH_3$

The synthetic scope of this type of displacement reaction has been investigated [14].

II. SPECTROSCOPIC, STRUCTURAL AND OTHER MISCELLANEOUS STUDIES OF ORGANOCADMIUM COMPOUNDS

The 60 MHz ¹H NMR spectral parameters for divinyl cadmium have been reported by Visser and Oliver. The change in the chemical shifts and coupling constants for the series of compounds (H₂C=CH)₂M (M = Zn, Cd, Hg) has been discussed as a function of the central metal atom [15]. Evans and Phillips have studied the occurrence of exchange of pentafluorophenyl groups in solutions of pentafluorophenyl cadmium iodide using ¹⁹F NMR spectroscopy (p-fluorine region). The calculated value for the equilibrium constant K for the Schlenk equilibrium

at -40° in DMF is 3.2 \pm 0.7 and at 15° in DMSO is 3.2 \pm 0.2 [1].

The UV spectrum of the complex Et₂Cd·2O₂ contains an intense absorption at 276 nm [2]. The 2, 2'-bipyridyl complex of bis(triphenyl-

germyl)cadmium and of bis(triphenylstannyl)cadmium display charge--transfer absorptions in the visible spectrum, λ_{max} of which decreases with increasing polarity of the solvent [3]. The consistently lower metal-metal stretching frequency (γ_{as} MCdM) in (Ph₃M)₂Cd·Bipy as compared with in (Ph₃M)₂Cd·TMED (M = Ge, Sn) has been explained in terms of Cd \longrightarrow Bipy charge-transfer [3].

The UV absorption spectrum has been recorded for the transient monomethylcadmium radical produced in the flash photolysis of dimethylcadmium. Two absorption systems are observed at 4000-4450 Å and 2640-2870 Å [16].

A molecular structure study of dimethylcadmium and its perdeuterated analog has been carried out assuming a free rotation model. A normal coordinate analysis is presented and the normal frequencies and eigenvectors have been calculated [17].

The full details of the X-ray crystal structure of bis(pentacarbo-nylmanganese)-2, 2':6', 2"-terpyridylcadmium $C_{15}H_{11}N_3Cd[Mn(CO)_5]_2$ have been published. The coordination of cadmium is very distorted trigonal bipyramidal and there is considerable distortion of the octa-

Fig. 1 Structure of [(Et₂O)₂Cd(B₁₀H₁₂)]₂ showing positions of boron, cadmium and oxygen atoms (from N.N. Greenwood et al., J.C. S. Dalton, 1972, 989).

bedral manganese coordination [18, 19]. The X-ray crystal structure of the diethylether complex of (dodecahydro-nido-decaborato)cadmium with empirical formula (Et₂O)₂Cd(B₁₀H₁₂) has revealed a dimeric molecule with each cadmium atom being bonded (via three-centre bonds) to two icosahedral B₁₀H₁₂ units [20] (Fig. 1)

REFERENCES

- 1. D. F. Evans and R. F. Phillips, J. C. S. Dalton, 1973, 978
- U. A. Alexandrov, G. N. Figurova and G. A. Razuvaev, J. Organometal. Chem., 57 (1973) 71
- F. A. J. Des Tombe, G. J. M. van der Kerk, H. M. J. C. Creemers,
 N. A. D. Carey and J. G. Noltes, J. Organometal. Chem., 44 (1972)
 247
- 4. N. S. Vyazankin, V. T. Bychkov, O. V. Linzina, L. V. Aleksandrova and G. A. Razuvaev, J. Organometal. Chem., 31 (1971) 311
- H. Müller and K. Dehnicke, Bol. Soc. Chil. Quim., 19 (1972) 17;
 Chem. Abstr., 78 (1973) 84507s
- 6. G. Soussan and P. Fréon, Bull. Soc. Chim. France, 1972, 4228
- 7. G. Soussan and P. Fréon, Bull. Soc. Chim. France, 1972, 4233
- Yu. A. Veits, V. L. Foss and I. F. Lutsenko, Vestn. Mosk. Univ.,
 Khim., 13 (1972) 10; Chem. Abstr., 76 (1972) 153880f
- 9. M. Gocmen and G. Soussan, J. Organometal. Chem., 61 (1973) 19
- M. Gormen, G. Soussan and P. Fréon, Bull. Soc. Chim. France, 1973, 562
- M. Gocmen, G. Soussan and P. Fréon, Bull. Soc. Chim. France, 1973, 1310
- 12. J. Thomas, Bull. Soc. Chim. France, 1973, 1300
- L. Le Guilly, R. Setton and F. Tatibouet, J. Organometal. Chem., 40 (1972) C5

- 14. P.R. Jones and S. J. Constanzo, J. Org. Chem., 38 (1973) 3189
- 15. H. D. Visser and J. P. Oliver, J. Organometal. Chem., 40 (1972) 7
- P. J. Young, R. K. Gosavi, J. Connor, O. P. Strausz and H. E. Gunning, J. Chem. Phys., 58 (1973) 5280
- 17. A.M.W.Bakke, J.Mol.Spectrosc., 42 (1972) 1
- 18. W. Clegg and P. J. Wheatley, J. C. S. Chem. Comm., 1972, 760
- 19. W. Clegg and P. J. Wheatley, J. C. S. Dalton, 1973, 90
- 20. N. N. Greenwood, J. A. McGinnety and J. D. Owen, J. C. S. Dalton, 1972, 989